Hydrology Based Ecological Habitat Suitability Indices for Evaluating Alternative Water Management Strategies

Presentation

to

Committee on Restoration of the Greater Everglades Ecosystem

By

Ken C. Tarboton, Ph.D., P.E.

April 27, 2001

Multi-Agency, Interdisciplinary Team

Coordinators

- Ken Tarboton
- Pete Loucks
- Steve Davis
- Jayantha Obeysekera

Hydrology & Modeling

- Raul Novoa
- Sharika Senarath
- Lehar Brion
- Jenifer Barnes
- Danielle Lyons

Ecology

Periphyton

- **Evelyn Gaiser**
- Dan Childers
- Joan Browder
- Sue Newman
- Linda Blum
- Rebecca Sharitz

Alligators

- Laura Brandt
- Frank Mazzotti
 Yegang Wu
- Ken Rice

Ridge & Slough

Chris McVoy

Tree Islands

- Lorraine Heisler
- Carl Fitz
- Fred Sklar
- Chris McVoy

Wading Birds

- Dale Gawlik
- Gaea Crozier

Fish

- Joel Trexler
- Bill Loftus

www.sfwmd.gov/org/pld/hsm/reg_app/hsi.html

Overview

- Objectives
- Development of Indices
 - Concepts and examples
 - Periphyton, Fish and Alligators
- Verification and calibration
 - Wading Birds
- Comparison and Combination
- Management Scenarios
- Sensitivity
 - Ridge and Slough

Objectives

- Create linkage between hydrologic stressors and ecological response
- Create "broad brush" simple but useful indices to quantify ecological response to different water management alternatives
- Verify, calibrate and refine indices to increase their usefulness

Objectives continued ...

- Use indices to provide more information on CERP ...
 - Did we get the water right?
 - A there opportunities for changing hydrology to improve ecology? Where?
 - Evaluate "what if" scenarios and their effect on habitat.
- Potential tool for use by RECOVER in regional evaluations during detailed design and implementation

- 1. Identify appropriate habitat indicators.
- 2. Define habitat suitability indices in terms of hydrologic stressors.
- 3. Use hydrologic model output (stressor) to obtain suitability index or time series of suitability values.
- 4. Combine sub-indices (if any) to get habitat suitability index or time series of SI's for each habitat.
- 5. Compute summary statistics for habitat suitability indices.

- 1. Identify appropriate habitat indicators.
 - Periphyton
 - Fish
 - Wading Birds
 - Alligators
 - Tree Islands
 - Ridge and Slough landscape

2. Define habitat suitability indices in terms of hydrologic stressors.

Sample Hydrologic Stressors

- Water Depth
 - average (weekly, monthly, annual, between specified dates)
 - min, max, above/below thresholds
- Flow Direction
- Flow Velocity
- Time related
 - hydroperiods discontinuous/continuous
 - time since last drydown
 - period below/above thresholds
 - rates of recession

3. Use hydrologic model output (stressor) to obtain suitability index or time series of suitability values.

Habitat Suitability Indices

South Florida Water Management Model

Obtained For

Individual cells

Indicator Regions

Landscapes

Periphyton

4. Combine sub-indices to get habitat suitability index or time series of SI's for each habitat.

Shark River Slough Alligators Current Conditions

Alligators

Shark River Slough Current Conditions

Shark River Slough Current System

Weighted Mean

$$SI_{Alligator} = [3(SI_{breed}) + 3(SI_{nest constr}) + 2(SI_{nest flood}) + (SI_{surv+cond})]/9$$

5. Compute summary statistics for habitat suitability indices.

- NSM, Alligators
- CERP, Alligators
- Current, Alligators

CERP Mean = 0.81 NSM Mean = 0.76 **Alligators**

Current Mean = 0.55

Alligators

- NSM, Alligators
- CERP, Alligators
- Current, Alligators

Alligators

Verification and Calibration

Wading Bird Suitability Sub-Indices

Wading Birds

Grid Cell Suitability

 $SI_{WB} = min(SI_{depth}, SI_{recession})$

Landscape Level Suitability

 SI_{land} = avg. SI_{WB} of highest 23 percent of cells for each of

- Remnant Everglades
- Coastal Zone
- Interior Zone

Wading Birds

Wading Birds Landscape Level Habitat Suitability

Jan-Mar

SI wood = Avg. SI land

r = 0.59

Wood Storks

SI wost = mean SI land (Jan- Mar)

White Ibis and other Small Herons

SI _{wish} = 1- [# weeks SI _{land} (Mar-Apr) \leq 0.5]/6

If [# weeks SI $_{land}$ (Mar-Apr) ≤ 0.5] > 6, SI $_{wish} = 0$

Mar-Apr

Note:

Correlation for SI land for 11 year period 1985-1995. Figure only shows SI land for 1992-1993

Habitat Suitability Comparisons

Restoration Plan

Habitat Suitability Comparisons

Natural System

Combined Habitat Index (Fish+Alligator+Tree Islands)

Management Scenarios

- Getting the "Water Right" is a surrogate for getting the "Ecology Right".
- How do different water management strategies effect ecology?
- Scenarios
 - CERP without any ASR's
 - CERP without and Lakebelt Storage

Scenario 1: CERP without ASR

Aquifer Storage and Recovery (1665 MGD)

- Caloosahatchee River Basin ASR (220 MGD)
- Lake Okeechobee ASR (1000 MGD)
- Lower East Coast Region ASR (445 MGD)
 - C-51 Regional Groundwater ASR (170 MGD)
 - West Palm Beach Water Catchment Area ASR (50 MGD)
 - Palm Beach County Agricultural Reserve ASR (75 MGD)
 - Hillsboro Site 1 ASR (150 MGD)

Scenario 2: CERP without Lakebelt Storage

Lake Belt Storage Areas

- North Lake Belt Storage Area (90,000 ac-ft)
 - → to capture stormwater runoff
 - to maintain canal stages and provide water deliveries to Biscayne Bay
- Central Lake Belt Storage Area (190,000 ac-ft)
 - → to store excess water from Water Conservation Areas 2 and 3
 - → to provide environmental water supply deliveries to Northeast Shark River Slough and Water Conservation Area 3B

Scenario Comparisons

Sensitivity

- Sensitivity analysis can be used to check robustness of functions.
- Sensitivity analysis undertaken for Ridge and Slough landscape, depth function.
- Optimal depth was adjusted +/- 3 inches and +/- 6 inches.
- Results shown for Current and Natural Systems.

Ridge and Slough - Sensitivity to Depth

Summary

- Habitat SI's are simple, yet robust and useful indicators of ecological response to hydrologic stressors.
- Provide system-wide indication of ecological habitat response to alternative water management strategies.
- Can be used in regional analysis and possibly to provide indication of when and where more detailed ecological modeling is needed.

Summary continued

- Can be generated fairly quickly and in future could be automated directly from hydrologic model output.
- Functionality should be enhanced in future by using water quality stressors in addition to hydrologic stressors.
- Process has enhanced inter-disciplinary and inter-agency communication and increased understanding of the Everglades.

